A 3D Musculo-Mechanical Model of the Salamander for the Study of Different Gaits and Modes of Locomotion

نویسندگان

  • Nalin Harischandra
  • Jean-Marie Cabelguen
  • Örjan Ekeberg
چکیده

Computer simulation has been used to investigate several aspects of locomotion in salamanders. Here we introduce a three-dimensional forward dynamics mechanical model of a salamander, with physically realistic weight and size parameters. Movements of the four limbs and of the trunk and tail are generated by sets of linearly modeled skeletal muscles. In this study, activation of these muscles were driven by prescribed neural output patterns. The model was successfully used to mimic locomotion on level ground and in water. We compare the walking gait where a wave of activity in the axial muscles travels between the girdles, with the trotting gait in simulations using the musculo-mechanical model. In a separate experiment, the model is used to compare different strategies for turning while stepping; either by bending the trunk or by using side-stepping in the front legs. We found that for turning, the use of side-stepping alone or in combination with trunk bending, was more effective than the use of trunk bending alone. We conclude that the musculo-mechanical model described here together with a proper neural controller is useful for neuro-physiological experiments in silico.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From Passive Dynamic Walking to Passive Turning of Biped walker

Dynamically stable biped robots mimicking human locomotion have received significant attention over the last few decades. Formerly, the existence of stable periodic gaits for straight walking of passive biped walkers was well known and investigated as the notion of passive dynamic walking. This study is aimed to elaborate this notion in the case of three dimensional (3D) walking and extend it f...

متن کامل

Gait Generation for a Bipedal System By Morris-Lecar Central Pattern Generator

The ability to move in complex environments is one of the most important features of humans and animals. In this work, we exploit a bio-inspired method to generate different gaits in a bipedal locomotion system. We use the 4-cell CPG model developed by Pinto [21]. This model has been established on symmetric coupling between the cells which are responsible for generating oscillatory signals. Th...

متن کامل

Evolution of Neural Controllers for Salamander-like Locomotion

This paper presents an experiment in which evolutionary algorithms are used for the development of neural controllers for salamander locomotion. The aim of the experiment is to investigate which kind of neural circuitry can produce the typical swimming and trotting gaits of the salamander, and to develop a synthetic approach to neurobiology by using genetic algorithms as design tool. A 2D bio-m...

متن کامل

Simulation of local scour caused by submerged horizontal jets with Flow-3D numerical model

One of the most concerning issues for researchers is to predict the shape and dimensions of the scour pit nearhydraulic structures such as the base of bridges, weirs, valves and stilling basins due to both financial and humanhazards induced by destruction of the structure. As the scour issue has its own complexity in relation to themultiplicity of effecting factors on it, in this study therefor...

متن کامل

Dynamics and Regulation of Locomotion of a Human Swing Leg as a Double-Pendulum Considering Self-Impact Joint Constraint

Background:Despite some successful dynamic simulation of self-impact double pendulum (SIDP)-as humanoid robots legs or arms- studies, there is limited information available about the control of one leg locomotion.Objective :The main goal of this research is to improve the reliability of the mammalians leg locomotion and building more elaborated models close to the natural movements, by modelin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2010